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Abstract. The propagation of elastic waves in a thick-walled pipe with an embedded inhomogeneity is considered.
The pipe is excited by a point force applied on its surface and the time harmonic problem is solved using the null
field approach, a method whose main characteristics are surface integral representations and expansions in spherical
and cylindrical vector wave functions. Entering in the expression for the scattered field are the transition matrix for
the cavity, the reflection matrices for the inner and outer surfaces of the pipe, the transformation functions between
the spherical and cylindrical vector wave functions and also the translation functions for the cylindrical waves.
Numerical examples, both in the frequency and time domain, are presented for a spherical cavity and an open
circular crack.

I. Introduction

In the present paper we use the null field approach (or 'T matrix method') to investigate the
propagation of time harmonic elastic waves in an infinite circular pipe with an embedded
bounded inhomogeneity. The elastic medium of the pipe is assumed to be homogeneous,
isotropic and linear and we excite the pipe by applying a point force on its outer surface.
This is a problem of apparent interest in many applications, for example, in the detection of
imperfections in materials in non-destructive evaluation.

The characteristic features of the null field approach are the use of surface integral
representations containing the free space Green tensor and expansions in systems of global
wave functions, in this case spherical and cylindrical vector wave functions. Details on the
basic features of this method, as it applies to elastodynamic problems, can be found in [1-4],
and for a brief introduction to integral representations and integral equations for time
harmonic fields in general we refer to [5] (where further useful references are given). The
mutiple scattering structure of the problem is then inherent in the system of equations
obtained from the integral representations. With the solution of this system at hand, we can
obtain the scattered displacement field in the pipe. The main constituents appearing in the
solution are the transition matrix for the cavity, the reflection matrices for the cylindrical
surfaces, the transformation functions between the sets of wave functions and the translation
functions for the cylindrical waves.

A number of authors have treated problems that are closely related to the present one.
Here we shall only mention a few that have also adopted the null field approach as their
method of solution. Thus, the scattering of elastic waves by an inhomogeneity in an elastic
half space and in a layered elastic half space is considered in [6-7], and an inhomogeneity in
an elastic plate is treated in [8-9]. A geometrical configuration which is of particular
relevance for the present article is the case of an inhomogeneity in a cylindrical structure.
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This has been considered both in the acoustic [10-11] and the elastic case [12-13], but in
these references, contrary to the present work, there is only one cylindrical surface involved.

In order to make the presentation as short and clear as possible, we have decided not to
include the complete explicit forms for the vector wave functions and the transformation and
translation functions used. Instead, we give references to where they can be found. The
formal solution of the scattering problem is presented in Section II. In Section III the source,
and thereby the incident field, is specified and in Section IV the numerical aspects are
discussed. We consider both a spherical cavity and an open circular crack. Plots of the
displacement field, both in the frequency and time domain, are presented.

II. Formal theory

Consider an infinite elastic pipe with an embedded obstacle as depicted in Fig. 1. The inner
surface S,, and outer surface S2 of the pipe, are assumed to be circular cylinders with radii a,
and a2, respectively. In this section we let the obstacle, S, be a cavity with practically
arbitrary shape (the unit normals i,, v = 0, 1, 2, is pointing outwards as shown). Later in the
numerical applications, we will emphasise a spherical obstacle and a circular ('penny-
shaped') crack. The restrictions imposed on the geometry here are not necessary for the
validity of the formal theory developed in this section. For the null field approach to be
applicable there must, however, exist inscribed and circumscribed circular cylinders and
spheres for the appropriate surfaces which must also satisfy the requirements of the
divergence theorem (these restrictions can be partially relaxed, see Section IV). Our
coordinate systems are then chosen according to Fig. 1 and the vector, d, that separates the

zO

VO

00

Zl

so

a. _

A

01

U1

do

d

V

S1

U2

a2

S2

n2

V2

xo

x,

F

Fig. 1. Geometry and notations for a pipe with an embedded inhomogeneity and an applied point force.
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origins is pointing towards O1. Furthermore V0 denotes the volume inside So, V1 inside S~, V2

outside S2 and V the volume outside S, inside S2 and outside S. We are concentrating on
time harmonic conditions and thus the time factor exp(-iot) is suppressed in all formulas.
The transverse and longitudinal wave numbers are k 2 =po 2/iL and k2 =poW 2 1(A + 2p),
respectively, where po is the density and A and tz are the Lam6 constants of the elastic
medium.

We study the displacement field u = ui + us (incident plus scattered field) in the elastic
pipe. The incident field, u', is the field from the source as if no scattering surfaces were
present, i.e. as if the source was located in a homogeneous space with the material properties
of the pipe. The boundary conditions which we apply to the present problem are those of
vanishing surface tractions, i.e.

t(u(r)) = 0, rES, v = 0,1,2 , (1)

where the traction t is defined as

du(r)
t(r) = t(u(r)) = Ah V' u(r) + 2/. dOn + uii x (V x u(r)), (2)

and where alan is the normal derivative. The starting point in the null field approach is a
surface integral representation for the displacement field u which for the present problem is

u'(r') + - - {u0 (r) ( . (r, r')) - to(r) G(r, r')} dS

+ S f {ul(r)- (h. (r, r')) - t(r) ' G(r, r')} dS

-, {u 2(r)· ( . (r, r')) - t2(r) ·G(r, r')} dS

fu(r'), r'EV(3)
r' E VO, V, or V2.

Here u., v = 0, 1, 2, are the surface displacement fields, t, v = 0, 1, 2, the surface tractions,
G(r, r') the free space Green tensor and hi - (r, r') is the Green surface traction tensor
which has the same relation to the Green tensor as the stress tensor has to the displacement,
i.e.

fl ( r, r') = t(G(r, r')) = Ah V G(r, r') + 2 n + i/h X (V x G(r, r')) . (4)

Applying the boundary conditions, equation (1), the second terms in the integrals in
equation (3) vanish.

When working with the integral representation, equation (3), we use expansions of the
Green surface traction tensor and the displacement fields in spherical or cylindrical vector
wave functions. Here we only introduce the notations for these functions and for a detailed
definition we refer to Ref. [13] or [14] (note, however, that for the cylindrical wave functions
we use the same normalisation as in [13]). Thus, the outgoing and regular spherical vector
wave functions are denoted jn(r) and Re in(r), respectively (the former contains spherical
Hankel functions of the first kind, the latter spherical Bessel functions and both contain
vector spherical harmonics). The index n is a multiple index that contains a mode index, r
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(SH, SV and P waves) and the three indices, a-, m, , of the real spherical harmonics.
Similarly, the outgoing and regular cylindrical vector wave functions are denoted xk(h; r)
and Re xk(h;r), respectively (they contain Hankel or Bessel functions, trigonometric
functions and an exponential). The axial wave number is h and we also define the radial
wave numbers qp = (k 2 - h2 )1 /2 and q = (k 2 - h2 )" 2 with the square roots chosen to have
non-negative imaginary parts. The multiple index k stands for (r, o-, m) and we also introduce
the functions Xk(h; r) and Re Xk(h; r) by replacing all explicit 'i' by '-i'. The transformations
between the spherical and cylindrical wave functions are

Re Xk(h; r) = E Cn.k(h) Re X,,(r) (5)

un(r)= E I Ck,(h)xk,(h; r) p >0, (6)

where the transformation functions C,,k(h) and C*k.(h) (obtained from Ck(h) by replacing
all explicit 'i' by '-i') can be found in [14]. We use spherical coordinates (r, 0, cp) and
cylindrical coordinates (p, , z). Since we are working with two different cylindrical
coordinate systems, we also need the translation properties for the cylindrical wave functions

Re Xk(h; r0) = Rkk,(h; d) Re Xk,(h; r,) (7)

Xk(h; r 0) = C Pkk'(h; d) Re Xk,(h; r) , (8)
k'

where r = d + r, (the index 0 or 1 on the radius vector of course relates to the origin 00 or
0,). The translation functions Rkk(h; d) and Pkk,(h; d) are also given in [14]. From the
Green tensor expansions (cf. [14]) we can also derive the above-mentioned expansions of the
Green surface traction tensor which in our notation become

i Rer') = (r') t(,(r)), r' < r

i n (r')t(Re (r)), r' > r

dh
' Re Xk(h;r')t(X(h;r))k, p'<p

fi- (r, r') = d (10)
, dh

ki X(h; r')t(Re Xk(h;r))k ' P' >P

For the incident field we need three different expansions

u'(r') = E ak°(h) Re Xk(h; r) kd- r' E V (11)k EV0 (11) 

u'(r') = a Re qnk(r}) , r' E V, (12)
n

ai(')= ak(h)Xk(h; r) k r'EV2 (13)U k f. k 0 k, ')
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where the coefficients a0(h), a(h) and a are considered to be known quantities. Finally, we
assume the following expansions for the surface fields on S, S and S2

uo(r) = r Tyk(h) Re Xk(h;ro)- r) ES (14)

ul(r) = /n Re qn(rl), r E S1 (15)

u2(r ) = _ yk(h) Re Xk(h; ro) , rE S2 . (16)

The integral representation, equation (3), for the displacement field u is now employed for
the four regions V, V0 , V and V2 . The field expansions according to equations (11)-(16) are
inserted and the appropriate expansions of the Green surface traction tensor are utilized (i.e.
in the integral over S1 we use an expansion in spherical vector waves according to equation
(9) and in the integrals over SO and S2 we expand in cylindrical waves according to equation
(10)). Furthermore, q.,(rl) is transformed and translated into Re Xk(h; r') in V0, ln(rl) is
transformed and translated into k(h;r') in V2 and both Xk(h;r;') and Re xk(h; r) are
translated and transformed (note the order of the operations) into Re qlA(rl) in V.
Employing the linear independence of the spherical and cylindrical waves inside a sphere and
outside or inside a cylinder, we in turn get for the four regions V0, V, V and V

ak(h) + i yk ,(h)Ok(h) -i 2E k,(h) k (h)
sk' k' 

+ i : Cfnk,(h)Pk,k(h; -d) Re Onn ,.n = 0 (17)
k'n"n',

2(h) + i 01 2
ak(h)(h) Re Q (h ) -i (h)Re Qk.(h)- )y.(h) Re (h)

+ i Cfk,(h)Rkk(h; -d) Re Qn,,n .,', = O, (18)
k'n"n"'

dh 1
an + ' m - Pkk.(h; d)C'k. YO k Y(h) Re Q° k(h)

+ i E d k, Rk'k.(h; d)C*.k.(h) ..Yk '(h)Q k (h)+ i Qn = 0, (19)
k'k"k" .s n'

dh 1uS(r' ) = u(r') - u'(r') = i k Xk (h; r) k- Yk(h) Re Qkk'(h)

-iYC fC dh '
-iE -T Re Xk(h; r) kYkv(h)Qkk(h ) + i E qn(rl) Re Q,, , (20)

Here we have introduced

Qkk(h,h ) = s Re k,(h';ro).t( (h; ro) dS, (21)
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Qkk(h, h') = Re Xk(h'; r). t(Xk(h; ro ) dS, (22)

Qnn, = - f Re n, (r) t(n(r)) dS. (23)

Regular functions in both places in equations (21)-(23) will similarly define Re Qkk(h, h'),
Re Qkk(h, h') and Re Qn,,. When writing equations (17)-(20) in their present form we have
also made explicit use of the fact that the integrations in the z-direction in the integrals over

S, and S2 can be carried out analytically (since So and S2 have constant cross sections). These
integrations give essentially the delta function (h - h') which then enables us to perform
some of the h-integrations and thus we can write Qkk(h) instead of Qkk(h, h') and so on.
The Q matrix elements for an infinite circular cylindrical surface, as defined by equations
(21) and (22), have been calculated in Ref. [13] and we will not reproduce or comment any
further on them here. However, for the obstacle, according to equation (23), we will return
to the subject later on when we specify the shape of its surface.

The next step in the derivation will now be to solve equations (17) and (18) for y.,(h) and
yk,(h) and then insert the results into equations (19) and (20). After introducing a number
of new quantities, which are specified below, this yields

an - A - Rnn, Tn, n .c n . + c n = 0, (24)

uS(r) = usdir(r) + Us.an.m(r)

= us dir.(r) + E °n(r)Tnncn - E qn(r)Tnnc,,. (25)
nn' nn'

Solving equation (24) for the coefficients cn and inserting it into equation (25) then
determines the scattered field which is separated into two parts. The direct scattered field,

s dir iu dr, is the scattered field in the absence of the cavity, S, and the anomalous part of the
scattered field, us, anm. , reflects the presence of the cavity.

Turning to the new quantities introduced in equations (24) and (25) we start by giving the
form of the direct scattered field

Usdir.'(r) = E dh
kk' - ks

{ Xk(h; rO)Mkk(h)a(h) + Xk(h; rO)M k(h)a(h)

+ Re Xk(h; rO)Mk'k(h)ak(h) - Re xk(h; r o)M k k,(h)a(h)} . (26)

Here we have introduced (written in short-hand matrix notation)

M l = gt2(1 - RtR 2) io, (27)

M2 = 2(1_ - o2) 1 , (28)

M 3 = (1- R 0 22 )-lR2 (29)

M 4 = (1- ° (02)-1)° 02 , (30)
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where

kk(h) = Re Qkk(h)((Q ) )kk,(h) , (31)

1 kk(h) = Qkk,,(h)(Re Q2)-)kk(h) , (32)

are the reflection matrices for the inner surface, SO, from the outside and for the outer
surface, S2 , from the inside, respectively. The multiple reflections between the surfaces SO

and S2 are thus described by the matrices M v, v = 1, 2, 3, 4. This allows for explicit
interpretation of the terms in the expression for the direct scattered field. For instance, the
first term in equation (26) describes the contribution that is first reflected by the inner
surface, then multiply reflected and finally again reflected by the inner surface. The
transition matrix, Tnn,, for the cavity, SI, is defined in the conventional way

Tn, = - Re Qnn,,(Q )n, , (33)

and the coefficients c by

C, = i Qnn . (34)

Furthermore, we have introduced what might be called the spherical projection and
translation of the multiply reflected incident field

An= E dhk- Ck(h)
kk'k" -m s

{Pk'k"(h; d)M kk(h)ak(h) - Pk'k,(h; d)M'k(h)ak(h)

- Rkk(h; d)Mk k(h)ak(h) + Rkk,(h; d)M k,(h)a(h)}) , (35)

and the spherical projection and translation of the multiple reflection matrices

Rn = E k Cnk (h)
kk'kk"' -C sk

{(-Pk"k '(h; d)M "k'(h)Pkk'(h; -d) + Pk"k"'(h; d)M k"k'(h)Rkk'(h; -d)

+ Rkk..(h; d)M k. k (h)Pkk(h; -d)- Rkk.(h; d)M kk(h)Rkk,(h; -d)}Cf.k(h) . (36)

Finally, in the expression for the anomalous part of the scattered field, we have also
introduced the vector field

kk'k" - s

{Xk(h; ro)M kk(h)Pk'k.(h; -d) - Xk(h; rO)M kk,(h)Rkk.(h; -d)

- Re Xk(h; rO)Mkk.(h)Pkk,,(h; -d) + Re Xk(h; rO)M kk(h)Rkk,(h; - d)}Cl.k(h)

(37)

Specifying the incident field (which is the subject of the next section), determines the
expansion coefficients an , ak(h) and a2(h). Also, employing the explicit expressions for the
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basis, translation and transformation functions the various quantities introduced above may
be written out in greater detail. However, this gives rise to very lengthy expressions and will
not be described here.

III. The source

In this section we consider the incident field and its source which is chosen as a (time
harmonic) point force, F, acting at the point r and perpendicular to the outer cylindrical
surface, S2, of the pipe. We place the force below the inhomogeneity and consider the case
when it acts at (x,, yo,, zo,) = (a2, 0, zot), i.e. we choose a negative value of z 0, (cf. Fig. 1).
The cylindrical coordinates, with respect to the origin O0, are then

Pot = a2

ot = 0 (38)
Z0t = ZOt

and the spherical coordinates, with respect to the origin 0, are r, 0t, 0t1 where

2 = (a2 - d)2 + It

Olt = arccos(z,/r,t) (39)

'Pt = 0 .

The displacement field at the point r due to this point force is easily obtained from the free
space Green tensor as

u'(r) = F G(r, rt) . (40)

Expanding G(r, r,) in spherical or cylindrical vector waves according to equations (9) and
(10), and then comparing with the field expansions according to equations (11)-(13), enable
us to identify the expansion coefficients

a. = i F n(rt ) (41)

ak(h) = i F xk(h; r ,) (42)
/2 1

a2(h) = i ks F Re Xk(h; rt ) . (43)

These expressions are the same as in [13] (with the proper Hankel or Bessel function in
equations (42) and (43)). A characteristic of the vector basis functions, notable at this point,
is that they decouple into basis functions which are symmetric ('even') or antisymmetric
('odd') in ¢A. With our choice of force, only the symmetric group is excited and this, in turn,
leads to a reduction of the indices contained in the multiple indices n and k (since then
specifying r also implicitly determines a, i.e., we have T, a = 1, odd; 2, even; 3, even).
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IV. Numerical examples

Before discussing any numerical examples we first note that the integrands in A, R,,, and
in, cf. equations (35), (36) and (37), have both poles and cuts on the real h-axis.
Consequently, the integration contour has to be deformed into some contour in the second
and fourth quadrants and a suitable choice is (see Fig. 2)

hao = t - iat exp(-p31t) , t E (-, oo), a,/3 >0. (44)

This contour passes through the origin and it has a maximum (minimum) for t -1/3
(t = 1//3). Furthermore, it approaches the real h-axis in the appropriate quadrants for large

Itl. From numerical experimentation, good convergence is obtained with a = 1ksao and
/3 = 1/ksa2 . The computations have been carried out for frequencies up to ksaO = 10 and we
have chosen to put ks = 2kp which corresponds to Poisson's ratio v = 1/3. Recalling that the
parity index, or, is implicitly contained in the mode index, , and exploiting the fact that the
matrices appearing in equations (35)-(37) are diagonal in some of the indices (the
transformation matrix Ck, and the multiple reflection matrices Mk., are diagonal in the m
index and the translation matrices, Pkk' and Rkk, are diagonal in T) the infinite summations
are reduced to summations over T, ' and m. These summations have been truncated at
m max = 30 at most. A 200-point Gauss-Legendre quadrature has then proved to be sufficient
when computing each of the above-mentioned integrals for t E (-x, 0) and t E (0, x).
Regarding the truncations for the anomalous part of the scattered field as given by equation
(25), it is sufficient to take mmax = Ima = 4 for ksa < 5 and mmax = Imax = 5 for 5 < ka, < 10.

The integration contour given in equation (44) has, for the same reason as above, also
been used to compute the direct part of the scattered field, us' dir, defined in equation (26).
The p- and z-components of this field are difficult to handle numerically due to slowly
convergent parts of the integrands. However, these parts can be extracted and integrated
analytically by means of the integral (which is easily computed by means of ordinary calculus
of residues)

I
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I IRe q> 11

Il
Il
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1 l

mh

Re q< 0

ks Re h

Fig. 2. Cuts (---) and integration contour in the complex h-plane.

-ks



320 S. Olsson

xsin ax =fx = , a>0, Re p>0. (45)

The remaining integrals are computed with a 1000-point Gauss-Legendre quadrature. Using
the same truncation (mmax = 30 at most) as above, the components of the direct scattered
field are then computed.

We have done computations when the inhomogeneity is a spherical cavity or an open
circular crack (oriented in the xy-plane, i.e. the crack normal is parallel to the symmetry axis
of the pipe) and, as mentioned earlier, this requires the knowledge of its T matrix. For the
spherical cavity the T matrix has been well known for many years (it was first given by
Waterman [1]) and for the circular crack it was recently presented by Bostr6m and Eriksson
[15]. Therefore, we shall not explore this subject any further here except for one remark
about the boundary conditions which we have applied. The vanishing of the surface traction
for the obstacle is by no means an essential restriction as far as the formal derivation of
Section II is concerned. Other boundary conditions will just enter into the T matrix via the
definition of the Q matrix elements according to equation (23). It may also be remarked that
the T matrix can be obtained by other methods than the null field approach. The circular
crack of Ref. [15], where a direct integral equation method is employed (and no Q matrix is
involved), provides an example of this.

In the numerical examples we have chosen a pipe whose wall thickness is four tenths of its
inner radius and with the obstacle (sphere or crack with radius denoted by b) centered in the
pipe wall. All lengths are measured relative to the inner radius a0 and thus the outer radius is
a2 = 1.4a and the distance between the origins is d = 1.2a (cf. Fig. 1). Furthermore, the
point force is applied at a distance 0.2a0 just below the obstacle so that (x0,, Yo,, ot) =
(1.4a0 , 0, -0.2a) and the field is evaluated on the pipe surface at the same distance and the
same side above the obstacle, i.e. at (x0 , y0 , z0 ) = (1.4a, 0, 0.2a).

The process of solving equation (24) for the coefficients c involves the inversion of the
matrix (written in a formal notation) 1- RT. In the numerical procedure this matrix
inversion is accomplished by employing a Neumann series expansion.

The numerical computations have been tested as far as possible. Thus, the reflection
matrices, 0 and A 2, are tested for symmetry and 'hermiticity' which, in turn, are
consequences of reciprocity and energy conservation (this is further commented on in Ref.
[13]). Furthermore, the symmetry of the spherical projection and translation of the multiple
reflection matrices, i.e. R., and the reciprocity of the anomalous part of the scattered field
are also checked. The latter property means that the p-component of the anomalous field
remains unchanged if we interchange the location of the source and the point of evaluation.

First we consider the normal component of the direct scattered field, i.e. as if no
inhomogeneity is present, as a function of frequency ka,. The computations are performed
in steps of 0.01 in the frequency range 0.1 < ka, 10.0 and the result is shown in Fig. 3. The
very pronounced peaks, which is the most striking feature in the figure, correspond to the
cut-offs of the waveguide modes of the pipe for different values of the m index. Then by
placing the inhomogeneity in the pipe and turning to the anomalous part of the scattered
field, the corresponding frequency domain computations have been carried out. Due to the
large computer time consumed, the frequency steps are now made coarser and the
computations are thus performed in steps of 0.05 starting from ka = 0.05. Figure 4 shows
the result of such a computation for a spherical cavity of radius b = 0.1a0 and Figs. 5-7 for
an open circular crack of radius b = 0.la, b = 0.15ao and b = 0.2a, respectively. The cut-off
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k a0

Fig. 3. Absolute value of the normal component for the direct scattered
frequency ka,, on the outer surface of a circular cylindrical pipe.
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A.)
I I
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Fig. 4. Absolute value of the normal component for the anomalous scattered displacement field, as a function of
frequency k,ao, on the outer surface of a circular cylindrical pipe with an embedded spherical cavity of radius
b/a = 0.1.

peaks from Fig. 3 also appear at the same frequencies in these figures although not always as
well pronounced in this coarser frequency spacing. A general conclusion that can be drawn
from these figures is that the sphere seems to have a greater influence on the anomalous field
than does the crack (at least when the crack is oriented in the way considered here). Also,
the cut-off peaks are broader, and thus become more pronounced, in the sphere case. The
situation shown in Fig. 7 also requires a special remark since it deals with the extreme
configuration where the diameter of the crack precisely equals the thickness of the pipe wall.
Thus, there is one point on the inner and one on the outer surface where the crack just
touches the respective surfaces. Examining Figs. 4-6 we note that the region around and
above ka, = 8.0 displays a very sensitive behavior. For the extreme case of a surface

U.D -I --

U- - -
v

To

n R

/(/Vv'vY - IV 1I~v
.
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Fig. 5. Absolute value of the normal component for the anomalous scattered displacement field, as a function of
frequency k,ao, on the outer surface of a circular cylindrical pipe with an embedded open circular crack of radius
blao = 0.1.
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Fig. 6. The same as Fig. 5 but with a crack of radius b/ao = 0.15.

touching crack we have not, by increasing truncations, been able to achieve stable values in
this region and the computations have thus been cut off at k,a o = 7.5 as shown in Fig. 7.

Having computed the displacement field in the frequency domain we can obtain the time
domain solution by a Fourier integration in frequency. We therefore assume that the source
has delta function dependence on time, and to restrict the frequency range we place a filter
at the receiver. This filter is chosen as

f(w) = sin 2( --

((0)2 - W1
(46)

where w, and oz are the lower and upper boundary of the frequency band. Apart from its
simple form it also has the advantage of really using most of the frequency band. Exploiting
the fact that the fields should be real we thus have
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k a0

Fig. 7. The same as Fig. 5 but with a crack of radius blao = 0.2.

u(r, t) = | f(w) Re{u(r, o) e-i '} do,
1

where u could be any of the displacement fields of interest.
The numerical integration in equation (47) is carried out by the simplest possible

integration scheme, i.e. the trapezoidal rule. For comparison, all the computations have

been peformed for the same frequency band 0.05 - ksa o - 7.5 (with ksao in steps of 0.05) and

with the dimensionless time ctl/a in steps of 0.05 (c = wlk, is the transverse or shear wave

speed). For the three different cracks of Figs. 5-7 the corresponding time domain solutions
have been computed. The result for a crack of radius b/la = 0.1 is presented in Fig. 8 which

thus shows the normal component of the anomalous field, at our point of evaluation, as a

(47)

-10 0 10 20 30 40

Cs t/a o

Fig. 8. The normal component of the anomalous scattered displacement field, as a function of time c,t/ao , on the
outer surface of a circular cylindrical pipe with an embedded open circular crack of radius b/la = 0.1.
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function of time (the general behavior for the other two cracks are the same as in Fig. 8). As
seen in the figure, there is a small flutter even a considerable time after the main pulse and
this is due to both insufficient numerical accuracy and the presence of the sharp frequency
cut-offs. This behavior due to the cut-offs becomes even more apparent when we try to plot
the time domain solution for the anomalous field in the sphere case or for the direct field.

V. Concluding remarks

In the present paper the null field approach has been extended to the problem of a bounded
inhomogeneity in a thick-walled pipe excited by a point force applied to its outer surface. A
characteristic feature of this problem is that it is non-rotationally symmetric, both in the
purely geometrical sense, on account of the inhomogeneity, and as a result of the applied
point force. Another feature which makes the present problem more complicated as
compared to the cylindrical rod treated in Ref. [13] is, of course, the presence of an
additional scattering surface. This complexity is apparent when accounting for the explicit
forms of the participating quantities in a comparison of the formally similar solutions of the
present work and Ref. [13]. As a result the computer effort needed here is also considerable.

As mentioned earlier, the derivation presented here is valid for different inhomogeneities,
both with regard to shape and boundary conditions. Once provided with the proper
transition matrix, it can be fitted into our numerical scheme and, by now, the items in the
library of such matrices are numerous.
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